ANNUAL EVALUATION REPORT 2018

WTWMA (San Angelo)

Dr. Arquímedes Ruiz-Columbié

Active Influence & Scientific Management

Cloud seeding operations 2018 began over the West Texas Weather Modification Association target area in May. This annual report serves as a summary of results.

A total of **54 clouds** were seeded and identified by TITAN in **21 operational days**. Table 1 in page 1 summarizes the general figures:

Table 1: Generalities

First operational day: May 2nd, 2018 Last operational day: September 3rd, 2018

Number of operational days: 21

(Four in May, four in June, eight in July, three in August, and two in September)

According to the daily reports, operational days were qualified as:

Sixteen with excellent performance

Two with very good performance

Three with good performance

Number of seeded clouds: 54 (23 small, 10 large, 21 type B)

Missed Opportunities: one with lifetime longer than 1 hour (less than 2 % of resources) July 6th: Storm # 466 over Irion and Crocket Counties 15:16-19:00 UTC

Small Clouds

Evaluations were done using TITAN and NEXRAD data.

Table 2 shows the results from the classic TITAN evaluation for the 23 small seeded clouds which obtained proper control clouds.

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	70 min	40 min	1.75	75 (56)
Area	87.8 km ²	58.5 km ²	1.50	50 (49)
Volume	311.0 km ³	165.7 km^3	1.88	88 (79)
Top Height	9.1 km	8.3 km	1.10	10 (4)
Max dBz	53.8	48.9	1.10	10 (3)
Top Height of max dBz	4.1 km	4.3 km	0.95	-5 (2)
Volume Above 6 km	91.3 km ³	30.9 km ³	2.95	195 (137)
Prec.Flux	$683.2 \text{ m}^3/\text{s}$	$286.6 \text{ m}^3/\text{s}$	2.38	138 (71)
Prec.Mass	2860.1 kton	871.6 kton	3.28	228 (150)
CloudMass	226.7 kton	90.5 kton	2.50	150 (87)
η	12.6	9.6	1.31	31 (34)

 Table 2: Seeded Sample versus Control Sample (23 couples, averages)

Bold values in parentheses are modeled values, whereas η is defined as the quotient of Precipitation Mass divided by Cloud Mass, and is interpreted as efficiency. A total of 178 AgI-flares and 20 hygroscopic flares were used in this sub-sample with a very good timing (84 %) for an effective AgI average dose of about 55 ice-nuclei per liter. The seeding operation for small clouds lasted about 9 minutes on average. An excellent increase of 150 % in precipitation mass together with an increase of 87 % in cloud mass illustrates that the seeded clouds grew at expenses of the environmental moisture (they are open systems) and used only a fraction of this moisture for their own maintenance. The modeled increases in lifetime (56 %), area (49 %), volume (79 %), volume above 6 km (137 %), and precipitation flux (71 %) are notable. There were slight increases in top height (4 %) and in maximum reflectivity (3 %).

The seeded sub-sample seemed 34 % more efficient than the control sub-sample. Results are evaluated as **excellent** (although timing might have been better).

An increase of 150 % in precipitation mass for a control value of 871.6 kton in 23 cases means:

 $\Delta_1 = 23 \text{ x } 1.50 \text{ x } 871.6 \text{ kton} \approx 39 \text{ 468 kton} \approx 32 \text{ 009 ac-f}$ (layer: 19.5 mm $\approx 0.77 \text{ in}$)

Large Clouds

The sub-sample of 10 large seeded clouds received a synergetic analysis. On average, the seeding operations on these large clouds affected 74 % of their whole volume with a perfect timing (100 % of the material went to the clouds in their first half-lifetime). A total of 126 AgI-flares and 2 hygroscopic flares were used in this sub-sample for an effective AgI average dose of about **70 ice-nuclei per liter**.

Also on average, large clouds were 20 minutes old when the operations took place; the operation lasted about 23 minutes, and the large seeded clouds lived 220 minutes.

Table 3 shows the corresponding results:

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	220 min	165 min	1.33	33
Area	1149 km ²	870 km ²	1.32	32
Volume	4717 km ³	3181 km ³	1.48	48
Volume Above 6 km	1808 km ³	1037 km ³	1.74	74
Prec.Flux	9997 m ³ /s	6934 m ³ /s	1.44	44
Prec.Mass	131 960 kton	73 720 kton	1.79	79

Table 3: Large Seeded Sample versus Virtual Control Sample (10 couples, averages)

An increase of 79 % in precipitation mass for a control value of 73 720 kton in 10 cases may mean:

 $\Delta_2 = 10 \ge 0.79 \ge 73720$ kton = 589760 kton ≈ 478295 ac-f (layer: 50.7 mm ≈ 2.0 in)

Type B Clouds

The sub-sample of 21 type B seeded clouds received a synergetic analysis. On average, the seeding operations on the type B clouds affected 27 % of their whole volume with a very good timing (84 % of the material went to the clouds in their first half-lifetime). A total of 426 AgI-flares and 16 hygroscopic flares were used in this sub-sample for an effective AgI average dose of about **60 ice-nuclei per liter**.

Also on average, type B clouds were 120 minutes old when the operations took place; the operation lasted about 22 minutes, and the type B seeded clouds lived 250 minutes.

Table 4 shows the results:

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	250 min	235 min	1.06	6
Area	3528 km ²	3221 km ²	1.10	10
Volume	14917 km ³	13173 km ³	1.13	13
Volume Above 6 km	5503 km ³	4660 km ³	1.19	19
Prec.Flux	23 555 m ³ /s	20 963 m ³ /s	1.12	12
Prec.Mass	167 901 kton	141 093 kton	1.19	19

Table 4: Type B Seeded Sample versus Virtual Control Sample (21 couples, averages)

An increase of 19 % in precipitation mass for a control value of 141 093 kton in 21 cases may mean:

 $\Delta_3 = 21 \text{ x } 0.19 \text{ x } 141 \text{ } 093 \text{ kton} \approx 562 \text{ } 961 \text{ kton} \approx 456 \text{ } 561 \text{ ac-f} (layer: 7.60 \text{ mm} \approx 0.30 \text{ in})$

The total increase: $\Delta = \Delta_1 + \Delta_2 + \Delta_3 = 966\ 865\ ac-f$

(~1392 ac-f per small storm; ~47 830 ac-f per large storm; ~21 741 per B storms)

Micro-regionalization

Increases in precipitation mass were analyzed county by county in an attempt to better describe the performance and corresponding results. **Table 5** below offers the details:

County	Initial	Extended	Acre-feet	Inches	Rain	%
	See	ding	(increase)	(increase)	(season value)	(increase)
Sterling	9	11	139 100	1.74	13.37 in	13.0 %
Reagan	4	10	63 700	1.01	11.65 in	8.7 %
Irion	8	15	123 200	2.19	12.63 in	17.3 %
Tom Green	8	15	146 200	3.58	17.66 in	20.3 %
Crocket	9	16	204 800	1.36	11.93 in	11.4 %
Schleicher	10	13	168 000	2.53	20.71 in	12.2 %
Sutton	5	6	47 300	0.88	20.75 in	4.2 %
Outside TA	1	2	~ 66 800	(~ 7 % o	f the total amour	nt)

Total	54	88	959 100 ac-f		
Average (only for the	bold values)	1.90	15.49 in	12.4 %

(Initial seeding means the counties where the operations began, whereas extended seeding means the counties favored by seeding after the initial operations took place; seasonal value of precipitation does not include April since no seeding operations took place during that month).

Final Comments

- 1) Results are evaluated as **excellent**.
- 2) The micro-regionalization analysis showed increases per county; the average increase in precipitation, referred to the seasonal value, is about 12 %. Noticeable relative increases in precipitation were more distributed than in previous campaigns, although the central region (Irion and Tom Green Counties) got the maximum impact (~ 30 % of resources);
- 3) Radar estimations of precipitation should be considered as measurements of trend. Nevertheless, according to the results on this report's tables, seeding operations improved the dynamics of seeded clouds.